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Adiabatic invariants are a powerful tool for solving certain problems in classical
mechanics. Unfortunately, they are rarely taught outside of advanced undergraduate
mechanics courses. In these notes, I will explain adiabatic invariants using the idea
behind problem 3 of EuPhO 2025. T will assume you’ve studied that problem, and
also that you're familiar with the Hamiltonian formulation of classical mechanics for
systems with one degree of freedom.

§1 Introduction

Adiabatic invariants appear in problems involving an oscillating mechanical system
with a parameter that varies slowly with time. As an example of such a system,
consider a pendulum consisting of a bob, of mass m, hanging from some massless
string that passes through a hole in the ceiling (see figure 1(a)). We can vary a
parameter by pulling the string up through the hole, changing the pendulum’s length
£(t) (see figure 1(b)). This variation is ‘slow’ if the characteristic time, T}, over which
the length changes is much greater than the pendulum period, T'(¢), at any time ¢
during the variation.
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By varying a parameter, we usually change the energy of the system. In the pendulum
example, the energy of the bob is not conserved because we do work on the bob
by pulling the string upwards. A natural question to ask is then: by how much
does the energy change between the moment when we start pulling the string and
the moment when we stop? This exact problem was posed by Hendrik Lorentz
(after whom the Lorentz force and Lorentz transformations are named) to the other
physicists attending the Solvay conference in 1911 (see figure 3). Einstein gave the

fPlease send corrections and comments to thomas.foster@princeton.edu.
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answer immediately (see Einstein (1994)): the energy changes such that the ratio of
the energy to the frequency of the pendulum remains constant'. Below, we will see
that the constant ratio of energy to frequency in this problem is an example of an
adiabatic invariant.

FIGURE 3: Photo taken at the first Solvay conference, 1911. Seated (L-R): W.
Nernst, M. Brillouin, E. Solvay, H. Lorentz, E. Warburg, J. Perrin, W. Wien, M.
Curie, and H. Poincaré. Standing (L-R): R. Goldschmidt, M. Planck, H. Rubens, A.
Sommerfeld, F. Lindemann, M. de Broglie, M. Knudsen, F. Hasenohrl, G. Hostelet,
E. Herzen, J. H. Jeans, E. Rutherford, H. Kamerlingh Onnes, A. Einstein, and P.
Langevin. Almost half of the participants had won or would win a Nobel prize.

§2 Phase space

Before we can understand the general definition of an ‘adiabatic invariant’, there are
a few concepts that I need to introduce. First, it will prove very useful to visualise
the motion of the system in an abstract space called phase space.

For simplicity, I will focus on systems with only one degree of freedom. The state of
such a system, at a given time ¢, is described by a generalised coordinate, ¢, and the
associated canonical momentum, p. In mechanics problems, p is typically a function
of g, its rate of change ¢, and possibly ¢. If we know the Lagrangian £(q, ¢, t) for our
system, then p is given by p = 0L£/0d¢. We can visualise the state of the system by
plotting the point (g, p); the two-dimensional space that this point lives in is called
‘phase space’.

As the system evolves, the values of ¢ and p describing the state of the system change.
Thus, the point (g, p) moves around, tracing out a curve in phase space. For an

iThis problem can also be solved directly, without adiabatic invariants; for example, see Gnidig
et al. (2016), problem 23; or, check out the original treatment in Rayleigh (1902).



Thomas Foster Adiabatic Invariants

oscillating system whose parameters don’t change with time, the point (g, p) moves
repeatedly around a closed curve. This curve has equation H(q, p) = const., where
H(q, p) is the Hamiltonian; for mechanical systems, this is usually just the equation
of energy conservation.

Let’s see what this looks like for a pendulum. A natural choice of generalised coordin-
ate is the angle 6 that the string makes with the vertical. Then, the Lagrangian is
L£(6,0,t) = %mé(t)2 + %mé(t)292 + mgl(t) cos @, so the corresponding canonical mo-
mentum is L = dL£/00 = ml(t)*6. This is just the angular momentum of the bob
about the pivot point where the string meets the ceiling. If the length ¢ is fixed, then
the Hamiltonian is (6, L) = L?/2m/f* — mgl cos 6, so the system moves around the
constant-energy curve L?/2mf? —mgl cos @ = const. These curves in phase space are
plotted in figure 4.

Each constant-energy curve corresponds to a possible motion of the pendulum. The
amplitude of the motion can be read off from the size of the variation of the 6
coordinate along the horizontal axis. We can see that these curves come in three
different types. First, for amplitudes less than =, the curves are closed and roughly
elliptical; these curves represent the pendulum swinging back and forth. Second,
there is one curve for which the amplitude is exactly m; this curve is called the
separatriz and it represents the pendulum just managing to swing until it points
vertically upwards. Third, at even higher energies, the curves are no longer closed;
these curves represent the pendulum swinging around and around the pivot in one
direction without stopping, either clockwise or anti-clockwise according to the sign
of L. This kind of motion is called ‘circulation’.
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FIGURE 4: Constant-energy curves in phase space for a pendulum, plotted against

angle and angular momentum (normalised to be dimensionless). In region (D, the

pendulum motion is a back-and-forth oscillation. The thicker curve labelled @) is

the separatrix. In each region labelled @), the pendulum motion is circulation in a
particular direction around the pivot.
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We could add a third dimension to our phase-space plots by including a time axis.
The resulting three-dimensional space is called extended phase space. In extended
phase space, the state of the system at a given moment is represented by a point
(¢,p,t). This point moves around as the system evolves; it traces out a spiral, as
shown in figure 5. It will be useful to have a way of referring to the curve traced
out by the point (¢, p,t) as it moves; we’ll call it the phase trajectory, or just the
trajectory, of the system.

—m/2

Angular Momentum

Angle 6 L/mgV? (32

FIGURE 5: Trajectory (red) of a pendulum through extended phase space, for a
particular set of initial conditions. In the ¢ = 0 plane, the phase portrait from
figure 4 is drawn (blue). Since the trajectory passes through a constant-energy curve
inside the separatrix, the energy of the pendulum is low enough that its motion is a
back-and-forth oscillation with amplitude less than .

§3 Adiabatic invariants

Now let’s think about what happens when we start slowly varying a parameter or,
more specifically, when we slowly vary the Hamiltonian. In our three-dimensional
extended-phase-space plot, suppose we normalise the time coordinate along the
vertical axis to Tj, the timescale for the slow variation. Then, since T'(t) < Ty, the
phase trajectory will spiral very rapidly around the vertical line § = L = 0, as in
figure 6.

This phase trajectory is analogous to the field line in problem 3 of EuPhO 2025. As
in that problem, the spiralling trajectory seems to trace out a tubular surface, which
I'll call S. A more precise definition of S is as follows. Let the initial energy of
the pendulum be Ej. In the ¢ = 0 plane, let C be the curve H(q,p,t = 0) = Ej.
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Through every point of ', we can draw a phase trajectory. The set of all possible
phase trajectories through points of C' forms a surface; this surface is the one I define
to be S. Each phase trajectory in this set traces out a tight spiral, as described above.
Therefore, S looks like a tube whose cross section, at any fixed t, approximately
coincides with a constant-energy curve H(q, p,t) = const., like the curves plotted in
figure 4. The cross section has this shape because the condition T'(t) < T, means the
system barely changes over one oscillation, so the phase trajectory cannot deviate
much from the shape it would have if there were no time variation. Over many
oscillations, however, the energy of the pendulum could change, causing the tube to
grow or shrink (see figure 6).
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FIGURE 6: Trajectory (red) through extended phase space of a pendulum with a
slowly varying length. For this simulation, I set d¢/dt = —0.003¢/2¢(0)"/2. The
time coordinate is normalised to Tj, which means the trajectory forms a tight spiral.
In the ¢ = 0 plane, the phase portrait from figure 4 is drawn (blue). The curve C' is
highlighted (black).

The key idea in the solution to problem 3 was that the magnetic flux through the
middle of surface S was conserved. Is there an analogous conservation law for general
Hamiltonian systems? It turns out there is! Let’s start with the equations defining
the phase trajectory: these are Hamilton’s equations,

au _on w_ o N
dt  op’ dt  9q°

We can rephrase these equations as a single vector equation for the motion of the
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point (g, p,t) through extended phase space:

d q 87'[/8]7
& p|=|-9H/0q] . (2)
t 1
This is extremely similar to the equation for a magnetic field line (z(s), y(s), 2(s)),
B
d (* v
& Yy - By ) (3>
z B,

where s is a parameter describing position along the field line. I'll define X to be the
vector field on the right side of (2). Then, X is analogous to the magnetic field B:
it tells us the direction of the phase trajectory though any point in extended phase
space, similar to how B tells us the direction of the magnetic field line through any
point in physical space.

Recall that magnetic flux conservation is a consequence of Gauss’s Law, which states
that the divergence of B is zero:

0B, 0B, OB,

.B = i =0. 4
v ox + oy * 0z 0 (4)
Crucially, X satisfies its own version of Gauss’s Law. The identity
0 (O0H 0 OH 0
e i B (1) =
8q<0p)+0p( 061)+0t() v ®)

which is satisfied thanks to the commutativity of partial derivatives, is exactly analog-
ous to (4) — I've just replaced the components of B with components of X, and I've
replaced z, y and z with the coordinates ¢, p and ¢ that describe position in extended
phase space. Thus, (5) tells us that the divergence of X in extended phase space is
zero. This result is called Liouville’s Theorem. More precisely, Liouville’s Theorem
states that the phase trajectories for a Hamiltonian system are the streamlines for
an incompressible flow."

In the same way that Gauss’s Law (4) implies that the magnetic flux through S in
problem 3 is conserved, Liouville’s Theorem (5) implies that the flux of X through
S is conserved for general Hamiltonian systems. There is no flux out through the
walls of S because —— by construction — X is tangent to S at every point.

Let’s use this conservation law by computing the flux of X, contained within tube S,
through a given plane of constant t. I have already argued that the intersection of S
and plane of constant ¢ must be, approximately, a curve of the form H(q, p,t) = const.
Since the component of X normal to the constant-t plane is simply 1, the flux of X
contained within tube S is just the phase-space area of the cross section,

J(E,t):/pdq. (6)

YLiouville’s Theorem also holds for systems with more than one degree of freedom.
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Here, the integration limits are chosen so that we are working out the phase-space
area enclosed by the constant-energy curve with energy E, viz., H(q,p,t) = E, as
shown in figure 7.

Canonical momentum p
(@]

Generalised coordinate ¢

FIGURE 7: Phase-space area (shaded in red) enclosed by a constant-energy curve
H(q,p,t) = E. This area is the adiabatic invariant J(E,t).

The quantity J in (6) is called the adiabatic invariant. It is a function of the energy
E of the system and the time ¢ because the integration curve depends on E and t.
Conservation laws are some of the most powerful tools we have for solving physics
problems; constancy of the adiabatic invariant provides us with a new conservation
law for slowly varying systems. In the one-dimensional systems discussed here,
conservation of J makes it easy to determine how the energy evolves with time.

Note that the adiabatic invariant is an approximation to an exactly conserved quantity
(namely, the flux of X through S). The reason we use J instead of the exact flux
is that the exact shape of S is complicated and can only be found by solving the
time-dependent equations of motion of the system, which is precisely what we want
to avoid doing!!

The adiabatic invariant is often described as ‘approximately conserved’. Because
of this, it’s tempting to think that the time derivative of the adiabatic invariant
must be smaller than the time derivative of a quantity that isn’t ‘approximately
conserved’, like the energy. In fact, this isn’t true! The time derivative of the
energy, at any instant, has characteristic size dE/dt ~ E/T,. It turns out that
the time derivative of the adiabatic invariant is also dJ/dt ~ J/T,. (We can
prove this by differentiating the definition of J and using Hamilton’s equations

\ 7

IA more advanced idea, which I won’t discuss any further in these notes, is that it is possible
to find higher-order corrections to (6) in order to approximate the exactly conserved flux more
accurately. For more details and history, see the review by Henrard (1993).
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of motion.) In what sense, then, is J ‘approximately conserved’ while F is not?
The answer can be understood from the time traces of £ and J plotted in figure 8.
This plot shows that, whereas E slowly drifts upwards over long times, J just
oscillates near its initial value. The energy changes relative to its initial value
by AFE ~ E. which is not small. Meanwhile, during the variation, the adiabatic
invariant J only changes by AJ ~ (T'/T;)J, which is small; this is actually one
way of defining adiabatic invariants for more general systems. In other words,
changes in J do not accumulate over long times; this is what makes J special.
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FIGURE 8: Plot of energy and the adiabatic invariant (both normalised to be
dimensionless) over time for a pendulum with slowly varying length. For this
simulation, I set d¢/dt = —0.01¢'/2¢(0)"/2. Both H and J ‘wobble’ on the timescale
of an oscillation; these wobbles are the reason dJ/dt ~ J/T} is nonzero. Over long
times, however, J remains close to its initial value.

§4 Examples

For practice, let’s compute J for two simple systems: a harmonic oscillator and a
pendulum.

The simplest possible example is a harmonic oscillator with a slowly varying
frequency. The Hamiltonian for this system is H(z,p,t) = p?/2m + mw(t)?z?/2.
Let the timescale for the variation be T,,; then, T, ~ (1/w)(dw/dt). For the
variation to be slow, we need T, > 1/w, or dw/dt < w?, for all t. When
this assumption is satisfied, we can use conservation of the adiabatic invariant,
which is the phase-space area inside a constant-energy curve. For the harmonic-
oscillator Hamiltonian, these curves are elliptical, as shown in figure 9. Using

\ 7
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4 N

the formula for the area of an ellipse, we find

_27TE
-

J (7)
So, if the oscillator varies slowly, the ratio of its energy to its frequency is constant.
This is what Einstein stated in 1911; of course, the answer is also valid for a
pendulum when its amplitude is small.

\ 7
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Ficure 9: Elliptical constant-energy curves in phase space for a simple harmonic
oscillator. The lengths of the semi-major and semi-minor axes are shown.

Example

For a more complicated example, let’s return to pendulum problem — this time
I won’t assume the amplitude is small. The adiabatic invariant is J = [ Ld#,
where the integral gives the area enclosed by the curve L?/2m/? — mgl cosf = E.
Let’s evaluate this integral for an oscillating pendulum whose amplitude is less
than 7 (the integrals are a bit different for a circulating pendulum). Define
E = —mgl(1 — 2E), so £ is a dimensionless measure of the energy: when & — 0,
the pendulum amplitude becomes small, and when £ — 1, the pendulum ap-
proaches the separatrix. Writing out the definition of J, we have

Hmax
J:4\/§mgl/2€3/2/0 Vecosf — (1 —28)d6, (8)

where 0,,., satisfies cos 0. = 1 — 2€. You could give this integral to Mathem-
atica or ChatGPT or whatever, but — in case you want to be able to solve such
integrals while stranded on a desert island — I'll explain one way of doing it by
hand.

- -’
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4 N

The integral would look nicer if both integration limits were constants, inde-
pendent of £. T’ll arrange for this to be the case in two steps. First, I'll use
a substitution that replaces the trigonometric functions with simpler functions.
Then, I'll use a linear shift to fix the integration limits to be 0 and 1.

For the first step, I substitute u = sin?(6/2). This substitution is very common
because of the identities

sin@ = 2sin(6/2) cos(0/2) = 2y/u(1 — u), (9a)
cosf =1 —2sin*(0/2) =1 — 2u, (9b)
Q=4 (9¢)

Vu(l—u)’

which show that the trigonometric functions turn into simple combinations of u
and 1 — u. The result is

& E—u
_ 1/23/2 /
J =8mg 'l /o g du . (10)

Next, I use w = u/€ to fix the integration limits:

1/23/2 ' l—w
0

Finally, motivated by (13), I'll return to a trigonometric form by substituting
w = sin? o, which gives

w/2 2
J = 16mg'/2%/2¢ Y

—d
0 1-Esin’p v
/2 1—
:16mgl/2€3/2/ \/1—Esin2g0——€ de
2
0 v 1—Esinp

= 16mg' 2?2 [E(E) — (1 - E)K(E)] , (12)

where

(13a)

/2 d
¥
Km)= [ =
0 1 —msin®p

/2
E(m) :/o \/1—msin? pdep (13b)

are special functions called the complete elliptic integrals of the first and second
kind, respectively. Formula (12) is what I used to create the plot of J in
figure 8. It is not hard to check that, as & — 0, we recover the result for a
simple harmonic oscillator; we need the identities K(m) — (7/2)(1 +m/4) and
E(m) — (7/2)(1 —m/4) as m — 0, which can be derived by Taylor expanding
the integrands in the definitions (13) for small m.

10
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For the adiabatic invariant to actually be invariant, we needed Liouville’s The-
orem, which only applies if the mechanical system is described by a Hamiltonian.
This means, for example, we cannot assume adiabatic-invariant conservation will
still apply when frictional damping forces are present.

® Final warning

Sometimes, slowly changing a parameter causes the phase trajectory to cross
the separatrix. The period for the separatrix orbit is infinite, because it takes
an infinite time for the pendulum to swing all the way up to the vertical (un-
stable) equilibrium point. This means that, around the separatrix, the adiabatic
assumption Ty > T'(t) must faill The change in the adiabatic invariant due to
this separatrix crossing (compared with what we would have if it were truly
conserved) can be calculated and is usually small. This difficult calculation was
carried out for the pendulum by Timofeev (1978), and for general Hamiltonian
systems by Cary et al. (1986) and Neishtadt (1987).

\ v
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