
Experimental Solutions
E1 - Magnetic Pendulum – solution

Motivation
In the vibration isolation system of the VIRGO grav-
itational wave detector (see Fig. 1), repulsive mag-
nets are used to shift the vertical oscillation fre-
quency of the suspension from around 1.5Hz to below
0.5Hz. This improves the sensitivity of the detector
to gravitational waves at a frequency of few Hz.

Figure 1: Magnetic anti-spring as part of the me-
chanical suspension of the VIRGO gravitational wave
interferometer. From NIM A 394 (1997) 397-408.

Derivation of modified pendulum frequency
(given to students)
The motion of a physical pendulum is constrained to
the y = 0-plane (one degree of freedom). A magnetic
dipole (oriented along the y-axis) is attached to the
pendulum such that it is located at the origin when
the pendulum is in equilibrium. Two more y-oriented
magnetic dipoles are placed on the y-axis at y = ±d.
The combined dipole moment of the magnets on the
pendulum is j1, the dipole moments of the external
magnets are both j2.
The magnetic field at position r⃗ generated by a

point dipole m⃗ at the origin, is:

B⃗(m⃗, r⃗) =
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4π
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The y-component of the magnetic field generated
on the x-axis by a dipole (0, j2, 0) located at (0, d, 0) is
therefore:
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The function is symmetric in d, so the two external
magnets provide equal contributions on the x-axis.
The first terms of a Taylor series around x = 0 are
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The potential energy of the pendulum as a function
of its angle φ is:

U(φ) = Mgs(1− cosφ) + j1 · 2By (d, 2ℓ · sin(φ/2)) , (4)

where s is the distance from the magnetic pendulum
COM to the pivot and ℓ is the distance from the pen-
dulummagnet to the pivot. Neglecting constants and
higher order terms:

U(φ) ≈ Mgsφ2/2 +
µ0

4π
· j1 · 2j2 ·

(
− 6

d5
ℓ2φ2

)
, (5)

U(φ) ≈
(
Mgs− 6µ0

π
· j1 · j2 ·

ℓ2

d5

)
· φ2/2, (6)

The kinetic energy of the pendulum is T (φ̇) = Iφ̇2/2,
from ∂φU(φ) = d

dt∂φ̇T (φ̇)we find the natural frequency

ω2 =

(
Mgs− 6µ0

π
· j1 · j2 ·

ℓ2

d5

)/
I (7)

We can write

ω2 = ω2
0 ± ω2

mag (8)

with ω2
0 = Mgs/I and ω2

mag = 6µ0

Iπ · j1 · j2 · ℓ2

d5 , where
the plus sign is for attractive external magnet polar-
ity and the minus sign for repulsive external magnet
polarity.

Task 1 - Mass of magnets and pendulum body
(1.0 pts)
Without scales for weight measurements, there are
multiple ways to determine the mass ratio between
magnets and pendulum:

A) finding the center of mass of the pendulum with
and without magnets (or with magnets in differ-
ent positions)

B) finding the tilt angle of the pendulum with mag-
nets offset horizontally (very precise by laser an-
gle measurement)

C) measuring the pendulum frequency as a function
of vertical magnet position, and using e.g. the
position of fastest oscillation

The methods allow very different precision (with B
best and C worst typically). Full score is achievable
with any method if the numerical result is good.
All pendulums were weighed on an analytical bal-

ance. We measured a mass distribution for Mpen =
(44.7±1.7)g (mean and standard deviation). The mass
of the two pendulum magnets agrees well with the
specificationsMmag = (7.68±0.01)g. The nominal mass
ratio follows as

M/m = 5.82± 0.22. (9)

Measurements of twelve pendulum magnets are in
agreement with the specified mass of 7.68g for one
pair. Separately measuring the six pairs reveals a
sample standard deviation of only 0.035g.
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Table 1: Physical parameters of pendulum
quantity value

mass of pendulum body Mpen = (44.7± 1.7)g
mass of pendulum magnets Mmag = (7.68± 0.03)g

distance magnets-axis ℓ = (23.0± 0.1)cm
distance COM-axis (no magnets) s0 = (12.0± 0.1)cm
distance COM-axis (with magnets) s1 = (13.6± 0.1)cm

period without magnets T0 = 2π/ω0 = (863± 5)ms
period with magnets T1 = 2π/ω1 = (885± 3)ms

moment of inertia (with magnets) I = (1.38± 0.02)g ·m2

dipole moment pendulum magnets j1 = (0.96± 0.01)A ·m2

dipole moment external magnet j2 = (2.30± 0.03)A ·m2

Since the magnet mass is more consistent between
setups than the pendulum mass (and both measure-
ments are fully anticorrelated by the given sum),
points are awarded only for the determined magnet
mass. The accepted range is chosen large enough to
cover the spread in determined magnet mass caused
by the variation in total mass relative to the given
value of 52.3g.

A: center of mass method By balancing the pen-
dulum e.g. on a ruler, one can first mark the center
of mass without magnets on the pendulum (S), then
attach the magnets in a position P as far away from
S as possible (e.g. bottom center), and measure the
new center of mass (S’). Balance of torques around
S’ gives

M · SS′ = m · S′P (10)

With measured values of SS′ = (1.6±0.1)cm and S′P =
(9.4± 0.1)cm one finds:

M/m = 5.9± 0.4. (11)

The separate masses can be expressed by the sum
and ratio:

m =
M +m

1 +M/m
= (7.6± 0.5)g (12)

M = (M +m) · M/m

1 +M/m
= (44.7± 0.6)g. (13)

B: tilt angle method (lighter prototype pendu-
lum) With the magnets placed at a position (xm, ym)
relative to the pivot (projected onto the pendulum),
the pendulum comes to rest at a tilt angle α relative
to vertical. This angle can be measured precisely
by observing the deflection δy of the laser spot at a
screen distance d:

tanα = δy/d (14)

N.B.: there is no factor two, since the rotation axis
of the mirror is parallel to the laser beam.
Calling the angle between vertical and the line

through pivot andmagnet equilibrium position β, bal-
ance of torques becomes:

M · s0 · sinα = m ·
√

x2
m + y2m · sinβ (15)

where
tan(α+ β) = xm/ym (16)

The COM distance from the pivot is s0 = (11.4 ±
0.1)cm. The best magnet position for a single mea-
surement is close to the edge at the widest part of the
pendulum. For xm = (7.7± 0.1)cm, ym = (18.0± 0.1)cm
and d = (55 ± 1)cm, we obtained δy = (5.9 ± 0.1)cm.
From this we calculate α = 6.12◦, β = 17.0◦, and
M/m = 4.7± 0.4.

−1.0 −0.5 0.0 0.5 1.0

` · sinα [cm]

−5

0

5

√
x

2 m
+
y

2 m
·s

in
β

[c
m

]

Figure 2: Analysis of tilt angle for several magnet
positions.

For higher precision the balance of torques should
be graphed for several magnet positions, see Fig. 2.
The slope yields M/m = 4.92 ± 0.03 (fit error only).
The intercept of (−0.36± 0.02)cm can be explained by
a failure to notice a 1 mm offset of the COM from the
symmetry axis of the pendulum, rotating the coordi-
nate system for β by 1◦.

C: frequency method (lighter prototype pendu-
lum) The pendulum frequency depends on the po-
sition of the magnet placed at (0, y) relative to the
pivot as follows:

ω2 =
Ms0 +my

I +my2
· g. (17)

This function has a unique maximum ωmax at

ymax =

√
I/M +

(
Ms0
m

)2

− Ms0
m

. (18)
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Eliminating ymax from the expression for ωmax, we can
solve for M/m:

m/M =
4ω2

max

Ω2
·
(
ω2
max

ω2
0

− 1

)
(19)

with Ω2 = g/s0 and ω2
1 = Ms0g/I.
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Figure 3: Pendulum frequency as a function of verti-
cal magnet position.

After a scan of different y-values, we find y0 = (10±
3)cm, ωmax = (7.65± 0.05) s−1, ω1 = (7.50± 0.06) s−1 and
Ω = (9.28± 0.04) s−1. We calculate M/m = 6.7 . . . 14.

This method is not precise enough with the rela-
tively high mass ratio of the setup.

variant: frequency with/without magnets
There are many ways to extract the mass ratio from
pendulum frequencies. A popular method was to
compare the frequency with and without magnets,
using only the nominal magnet position. The two
expressions for the frequencies are

I · ω2
0 = Mgs0 (20)

and

(I +mℓ2) · ω2
1 = (M +m)gs1 (21)

The mass ratio can be expressed as

M/m =
ℓ2/g − s21/ω

2
1

s21/ω
2
1 − s20/ω

2
0

= 6.1± 0.3. (22)

E1.1 – Masses Points
A Center of mass method 0.6

Determination of distances SS′

and S′P (0.1 per repetition with
different magnet position)

0.4

expression for mass ratio 0.2
B Tilt angle method 0.6

# of data points. 1:0.1, 2:0.3, ≥ 3:
0.4

0.4

expression for mass ratio (or
equivalent calculations for finding
the masses)

0.2

C Frequency method 0.6
measurement of ω1 and ω0 (0.1 per
repetition with ≥ 5 oscillations,
or 0.1 per 10 oscillations without
repetition)

0.4

expression for mass ratio 0.2
Numerical value for Mmag 0.4
value inside (7.7± 1.0)g or 0.2
value inside (7.7± 1.5)g or 0.1
reasonable estimate of uncer-
tainty

0.2

Total on Masses 1.0

Task 2 - Magnetic dipole moments (4.0 pts)
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Figure 4: Determination of magnetic frequency shift
by external dipole magnets.

a) Data collection The accessible frequency range
is maximized by using both possible external dipole
orientations. The closest possible distance in attrac-
tive orientation is given by stability of the magnets in
the rail against sliding towards the pendulum, and is
around d = 7 cm. In the repulsive mode it is given by
the full compensation point near d = 8.4cm, distances
down to around 9cm are practical.
For closer magnet spacings in repulsive mode, the

pendulum moves in a double-well potential with an
ill-defined behavior around zero amplitude. Eqn. ??
suggests a negative ω2 and is not valid for oscillations
around the off-set minimum. These data points are
therefore not useful for this problem. This is spec-
ified in the hint that the magnets must be collinear
when the pendulum is in equilibrium.
Since one needs to plot ω2 vs d−5, small d need

to be sampled much more finely to spread the data
points in d−5. Ideally, one can pre-calculate an equal
spacing, e.g. (0−0.2, 0.25−0.2, 0.5−0.2, 0.75−0.2, 1−0.2) · d0 =
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(∞, 1.32, 1.15, 1.06, 1) · d0. The point at infinity is
recorded by removing the magnets.
b) Specific magnetization Both attractive and re-
pulsive datasets can be combined in one plot by
counting repulsive magnet spacings as negative, ab-
sorbing the sign at ±ω2

mag:

ω2 = ω2
1 +

6µ0

Iπ
· j1 · j2 ·

ℓ2

d5
(23)

Plotting ω2 vs d−5, one can fit a linear relation with
slope k = 6µ0ℓ

2

Iπ · j1 · j2 and intercept ω2
1.

The example data in Fig. 4 yield a slope of k =
(2.14± 0.05)106cm5/s2. To extract the dipole moment
product one must measure the magnet-axis distance
ℓ = (23.0 ± 0.1)cm and find the moment of inertia
I. This can be extracted from the undisturbed fre-
quency ω2

1 = (Mpend+Mmag)gs1/I, with the given total
mass and gravitational acceleration, and the COM-
axis distance s1 = (13.6 ± 0.1)cm (by balancing). One
finds:

I =
(Mpend +Mmag)gs1

ω2
1

= (1.38± 0.02)g ·m2 (24)

The dipole moment product follows as

j1 · j2 = k · Iπ

6µ0ℓ2
= (2.33± 0.05) (Am2

)
2
. (25)

Since the ratio j2/j1 = 2.4 is given, the dipole mo-
ments separately are

j1 =
√

j1 · j2/2.4 = (0.98± 0.01)Am2. (26)

j2 =
√
j1 · j2 · 2.4 = (2.36± 0.03)Am2. (27)

With the true mass of the pendulum magnets
Mmagnets = 7.68g we find a specific magnetization of

j1/Mmagnets = (0.128± 0.030)Am2/g. (28)

The expected value can be calculated from manu-
facturer values of remanence (1.29T–1.32T) and den-
sity (7.4g/cm3–7.5g/cm3) of NdFeB–N42:

Br

µ0 · ρ
= 0.137Am2/g− 0.142Am2/g. (29)

The 10% reduction of the observed specific magne-
tization may be explained by edge effects in the small
magnets, where magnetization may not be homoge-
neous. There is a hint for edge effects also from the
magnetic moment ratio between external and pen-
dulum dipole moments, 2.4 measured with a magne-
tometer, higher than the volume ratio, 2.2 measured
without the coatings.
The data collection and linear regression was per-

formed for five different setups, the slope was con-
sistent within ±5% (explained by observed magnetic
moment variations) while the offset (squared fre-
quencies) was stable within ±1%. The accepted nu-
merical ranges cover this variation.

E1.2 – Magnetic Dipole Moments Points
a) Frequency measurements 2.0

Both attraction and repulsion
used

0.3

Closest d setting ≤ 9cm ( 0.1 if ≤
10cm)

0.3

Denser spacing for small |d| 0.3
0.1 per different d-setting (incl. ∞) 0.6
0.1 per 10 oscillations per d value 0.5

b) Specific magnetization 2.0
Graph of ω2 vs d−5 or ω vs d−5/2 or
log |ω2 − ω2

1 | vs log d
(1.0)

correctly enter data points (0.1
each)

0.5

correct axis labels and ticks 0.1
data covers ≥ 1

2 page 0.1
trend line drawn 0.1
slope read 0.1
slope error estimated 0.1
expression for determining I 0.3
expression for determining j1 · j2 0.2
expression for determining j1 0.2
Numerical value for j1/Mmag =

0.125Am2/g, or alternatively j1·j2 =

2.2 (Am2
)
2 (0.3 within ±10%, 0.2

within ±20%, 0.1 within ±30%)

0.3

Total on Magnetic Dipole Mo-
ments

4.0

If, instead of a graphical analysis, a slope was
calculated from two data points, we award 0.2/0.5
points for ”entering data”, no points for axis, space
and trend line (total loss: 0.6 points). For the rest we
apply the normal grading scheme.

Task 3 - Unknown external magnets (3.0 pts)
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Figure 5: Determination of unknown magnet power
law.

a) Data collection By experimentation one can
find that the unknown magnets are symmetric un-
der a 180◦ rotation, not anti-symmetric as the dipoles.
It is still possible to obtain both attraction and re-
pulsion, either by swapping the unknown magnets
(which are given to be oppositely magnetized to each
other), or by flipping the pendulum magnets. Flip-
ping the pendulum magnets may require a new mea-
surement of ω1 if the magnet position is not exactly
the same.
As the overall field strength is weaker, distances
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down to d = 5 cm are possible in attractive mode,
as well as about d = 5.5cm in repulsive mode. For
equal spacing in log-scale one can choose d values
increasing by roughly the same factor between fol-
lowing measurements.
Attractive and repulsivemode can not be combined

to increase precision, but can serve as independent
measurements of the absolute value of magnetic fre-
quency shift at a given separation. Only the attrac-
tive mode can be selected for its higher accessible
d-range and overall faster frequencies (higher rela-
tive precision).

b) Power law Plotting the absolute value of the
squared magnetic frequency shift |ω2−ω2

1 | versus the
magnet distance on double-logarithmic axes (Fig. 5),
one can fit a linear relation with slope a = −6.33±0.32,
indicating a power law ω2

mag ∝ d−6.

Figure 6: Dipole configuration of unknown external
(quadrupole) magnets.

c) Dipole configuration Since the exponent of the
magnetic frequency shift is one higher than for the
dipole magnets, we can conclude that also the expo-
nent of the magnetic field as a function of distance is
one higher than for the dipole law, B ∝ r−4. (In fact
the squaredmagnetic frequency shift follows the cur-
vature of the magnetic field, the derivatives add two
to the power law exponent.)
We are looking for a magnetic quadrupole config-

uration. This can be created by an arrangement of
equal and opposite dipole magnets (canceling the to-
tal dipole moment of the arrangement). The simplest
solution consistent with the package (see Fig. 6) con-
sists of two coaxial and opposite cylindrical dipole
magnets in each unknown external magnet, one with
north poles facing out, one with south poles facing
out.
Another valid solution is made of cylinders with ra-

dial magnetization (i.e. south poles towards the sym-
metry axis, north poles outwards, and vice versa).
This would be harder to build but yields magnets in-
distinguishable from the actual ones to leading or-
der.
Other possibilities of creating a quadrupole out of

opposite dipoles (e.g. with dipole offset not paral-
lel to the magnetic moments) are excluded because
of the cylindrical symmetry of the unknown external
magnets (this can be tested e.g. by rotation of the
unknown magnet in a dipole field).

E1.3 – Unknown external mag-
nets

Points

a) Data collection 1.0
Closest d setting ≤ 6cm 0.2
Denser spacing for small |d| 0.2
0.1 per 2 different d-settings 0.3
0.1 per 10 oscillations per d value 0.3

b) Power Law 1.5
Graph of ln

(
|ω2 − ω2

1 |
)
vs ln(d) (1.0)

correctly enter data points (0.1
each)

0.5

correct axis labels and ticks 0.1
data covers ≥ 1

2 page 0.1
trend line drawn 0.1
slope read 0.1
slope error estimated 0.1
Exponent value (−6±0.5: 0.5, −6±
1: 0.2 )

0.5

c) Dipole configuration 0.5
Sketch of possible dipole configu-
ration

0.3

justification (0.1 each for mag-
netic symmetry under reversal, lo-
cating the opposite pole in the
center, magnetic cylindrical sym-
metry, or cancellation of dipole
moments)

0.2

Total on Unknown external mag-
nets

3.0

If, instead of a graphical analysis, a slope was cal-
culated from two data points, we apply the grading
scheme of 1.2b).
In 1.3c), if no points were awarded for justification,

also no points are given for the correct configuration.

Task 4 - Nonlinear pendulum (2.0 pts)
a) Compensation Distance A precise way of find-
ing the compensation distance is from the analysis
of E1.2. We are interested in the x-intercept of the
regression line, with slope k = (2.14± 0.05)106cm5/s2
and y-intercept ω2

1 = (50.3 ± 0.3) s−2. We find d5comp =
k/ω2

1, or dcomp = (8.43± 0.05)cm.
Another possibility is to manually approach the

compensation point and carefully check for the ab-
sence of two separate minima.
A less useful method is the recording of the angu-

lar separation ∆φ of the split minima for d < dcomp

as a function of d. This relation is strongly curved
and therefore not suited for a precise extrapolation
to ∆φ = 0.

b) Period Power Law Near the point of full com-
pensation of the quadratic terms of gravitational and
magnetic potential, an interesting dependence of
pendulum frequency on amplitude can be observed.
Fig. 7 shows numerical calculations of the period

for different magnet spacings close to full compen-
sation (black) and without external magnets (red).
For experimentally achievable configurations,

three ranges can be distinguished:
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Figure 7: Numerical calculation of pendulum period
versus amplitude, for different degrees of compensa-
tion.
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Figure 8: Measured pendulum period versus ampli-
tude.

• for small amplitudes the period is constant, given
by the small remaining quadratic potential term
from imperfect compensation

• in an intermediate amplitude range, the magnetic
quartic potential dominates, leading to a theoreti-
cal dependence T (φ) ∝ φ−1 with amplitude φ.

• for large amplitudes, the influence of the local-
ized magnetic potential is small. The period ap-
proaches that of the undisturbed pendulum.

The extent of the relevant intermediate amplitude
range depends on the quality of compensation, for
example quantified by the ratio T0/T (φ = 0) of the
compensated small-amplitude period to the small-
amplitude period without magnets.

Typically the theoretical exponent of -1 is not
reached in experiment, because the quartic poten-
tial does not fully dominate for any amplitude re-
gion. The expected maximum slope of the power
law can be calculated numerically as a function of
T0/T (φ = 0), see Fig. 9. (The exponent averaged over
a factor of 2 in amplitude around the maximum is
very close to this maximum value.)

The data shown in Fig. 8 was acquired with a com-
pensation quality corresponding to T0/T (φ = 0) =
4.08. This results in an expected maximum exponent
of −0.645 (−0.63 when averaged over a factor 2 in am-
plitude). This agrees well with a linear regression
around the steepest part of the amplitude-period re-
lation.
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Figure 9: Maximum power law slope as a function of
”degree of compensation”.

E1.4 – Nonlinear Pendulum Points
a) Cancellation point 0.5

Numerical value for dcomp = (83.3±
2.0)mm (0.2 within 4mm)

0.5

b) Amplitude dependence 1.5
0.1 per 2 amplitude values 0.4
0.1 per oscillation at each ampli-
tude value

0.3

double-logarithmic graph 0.5
discussion (0.1 each for plateau at
small amplitudes, power law at in-
termediate amplitudes, or plateau
at large amplitudes)

0.3

Total on Nonlinear Pendulum 2.0
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E2: Optical Black Box - Solution

Task E2.1 - Central element (∼0.3 pts)
To find out what element is located at the center of
the box, we systematically beam into the box through
all 4 ports (labeled A, B, C, D). We take note of where
light exits. We deduce for the four options given:
• no element: Can be excluded because in that case
we would only see light exiting from opposite ports
but we can clearly see a signal around corners, e.g.
exiting port B when beaming in through port A.

• fully reflective mirror (both sides): This option
we can also exclude since it would not allow for di-
rect transmission along at least one of the optical
axes. However, we can clearly see light passing
from A to C and B to D (for some input polariza-
tions).

• regular-triangle-shaped prism: A regular-
triangle-shaped prism has a 60◦ angle between all
surfaces. This configuration will always deflect a
beam out of the optical axis, but as we clearly see
that a central beam remains straight, the prism
can be excluded.

• semi-transparent mirror: For every input beam,
the box produces two significant output beams.
This behaviour is well explained by a semi-
transparent mirror. In fact we used a 2mm thin
acrylic glass plate with a semi-transparent window
foil on one side.

To find out the orientation of the beam splitter (i.e.
the orientation of the partially reflective surface), no-
tice:
• To connect the two (perpendicular) optical axes of
the black box, it needs to sit under a 45◦ angle with
respect to both.

• Since ports A and B as well as C and D are con-
nected, the partially reflective surface runs diago-
nally from the corner between D and A to the cor-
ner of B and C. (see Fig. 10)
E2.1 Central Element Points

Systematic observation of light
splitting (automatically given if
correct identification)

0.1

Correct identification of semi-
transparent mirror

0.1

Correct deduction: Orientation of
the mirror

0.1

Total on E2.1 0.3

Task E2.2 - Port elements (∼2.2 pts)
We systematically beam in through all four ports and
write down the observed output for the remaining
three ports. Also, we pay attention to effects result-
ing from a varying input polarization (by rotating the
laser diode) and divergence and convergence of the
beam. This way, we obtain the observation matrix
Table 2.
From this, we conclude:
• Polarizer at port D:Whenever port D is involved,
there is a strong polarization-dependent behavior

A

B

C

D

Figure 10: View inside the box

Table 2: Observed Light Properties when beaming in
through one port (rows) and exiting through another
(columns)
In Exit A Exit B Exit C Exit D
↓

A -
focused beam,
focus close to
box

three focused
beams, focus
close to box

weak reflec-
tion, depends
on input polar-
ization

B
bright, focused
beam, focus far
away

- three beams,
very weak

diverging
beam, de-
pends on input
polarization,
intensity can be
reduced to zero

C
focused beam,
focus roughly
5cm away from
box

very weak, di-
verging beam -

collimated
beam, depends
on input po-
larization but
intensity can
not be reduced
to zero

D very weak, fo-
cused beam

diverging
beam, de-
pends on input
polarization,
intensity can
almost be re-
duced to zero

three, colli-
mated beams,
depends on
input polariza-
tion, intensity
can almost be
reduced to zero

-

and there is no polarization effect in all combina-
tions not involving D. Therefore, D is a polarizer.

• Diffraction Grating at port C: There are always
three beams coming out of port C. Therefore, there
must be a diffraction grating at C. Note: When
beaming in through port C, the higher diffraction
orders are clipped at the other ports such that
there is only one beam exiting.

• Convex lens at port A: Beaming along the axis
connecting ports C-A, we can clearly see a focus
outside the box - which can only come from the
element at port A – and therefore, there must be a
convex lens.

• Concave lens at port B: Along the axis B-D, we
obtain a diverging beam. This could originate from
a concave lens, or from a convex lens with a focus
inside the box at B. The beam divergence is appar-
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Figure 11: Setup to measure the diverging beam af-
ter the concave lens.

ently so flat that it does not converge to a focal spot
within the area of B. Thus we conclude that at B,
there is a concave lens.
E2.2 Elements Points
a) Recognizing or using the laser

diode as a linearly polarized
source of light

0.2

b) Observations and solution 2.0
A: observation / reasoning (beam
focus)

0.2

A: result focussing lens 0.3
B: observation / reasoning (diverg-
ing beam)

0.2

B: result concave lens 0.3
C: observation / reasoning (sepa-
rate spots)

0.2

C: result grating 0.3
D: observation / reasoning (rota-
tion dependence)

0.2

D: result polarizer 0.3
Total on E2.2 2.2

Task E2.3 - Properties (∼7.5 pts)
Now, we systematically conduct measurements to
obtain the desired values of the four elements. Note
that each window contains a protective glass plate
of thickness 0.13mm, so the elements appear 0.04mm
closer to the box edge than they actually are. For
true positions we use corrected values.

a) Convex lens behind port A (position and focal
length) We start by verifying the beam exiting the
laser being collimated with a constant spot size w0 ≈
(3.8±0.2)mm (may differ for each laser between 3mm
and 6mm). The possibility of a collimated beam is
apparent from the Rayleigh range zR (not required
from students):

zR =
πw2

0

4λ
≈ 16m (30)

Realistically, the optical paths used in this setup will
be below 50 cm, therefore, the widening of the Gaus-
sian beam can be neglected in comparison to our
measurement precision of the beam diameter.

Beaming in through port C (where we located the
diffraction grating, whose zeroth order has the same
beam profile as the incoming beam), we now mea-
sure the spot size as a function of distance from port
A. We assign negative values to the spot diameters
measured after the focus which we can roughly lo-
cate by eye to be at around 5 cm away from the box,
to use a linear fit function for the beam envelope. The
measured values are:

x [cm] w [mm]
1 2.6
2 1.9
3 1.2
4 0.7
6 -1.0
7 -1.7
8 -2.1
9 -2.8

10 -3.2
11 -3.7
12 -4.3
13 -4.9
14 -5.3
15 -5.8
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Figure 12: Linear fit of the spot size after the convex
lens vs. distance from box edge

The spot size can therefore be described by a linear
equation:

w(x) = w0 −
w0

f
(x− x0) = −w0

f
x+ w0

(
x0

f
+ 1

)
. (31)

Using the data plotted in Fig. 12, we obtain a focal
length of

f = − w0

w0/f
=

3.8mm
0.0603

= (6.3± 0.2)cm (32)

The true focal length is

f+,true = +6.5cm (33)

The position of the lens is found at the spot, where
the converging beam diameter is equal to that of the
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Figure 13: Linear fit of the spot size after the con-
cave lens vs. distance from box edge

original collimated beam (cutting the dashed line in
Fig. 12), which is −1.7cm from the edge at the box
(while the edge is 3.8cm from the center), thus

x+ = 3.8cm+ x0 = (2.1± 0.3)cm (34)

The true position is

x+,true = 2.2cm (35)

from the center of the box.
b) Concave lens behind port B (position and
focal length) To determine the position and focal
length of the concave lens, we measure the size of
the diverging beam at different positions. The posi-
tion of the lens is located where the beam diameter
would coincide with the original collimated beam.
We use the concave lens port B as an output, and

insert the beam at port D, where the polarizer will
not disturb the beam divergence. To measure the
beam size at different positions, we tape a piece of
paper with millimeter-scale onto the glass block, and
mark the beam edges with a pencil. This allows us
to measure the width with sub-mm precision (around
0.2mm root-mean-squared).
The following recorded beam widths are shown in

Fig. 13:

x [cm] w [mm]
1 5.0
2 5.4
3 5.7
4 6.1
5 6.5
6 6.8
7 7.3
8 7.7
9 8.2

10 8.5
11 9.0
12 9.6
13 9.9
14 10.3
15 10.7

Figure 14: Setup for determining the grating dis-
tance and position.
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Figure 15: Linear fit of the first order separation over
distance

From the fit, we determine the slope

w′ = 0.0415± 0.0005 (36)

and the point x0 = (−1.6±0.1)cm, where the envelope
cuts the original beam width w0 = 3.8mm

x− = 3.8cm+ x0 = (2.2± 0.1)cm (37)

which is our estimate for the position of the concave
lens. The true position is actually

x−,true = 2.1cm (38)

from the center of the box.
The focal length is determined by

f− = −w0

w′ = (−9.2± 0.3)cm (39)

The true focal length of the concave lens has been
measured to be:

f−,true = (−9.2± 0.15),cm (40)

Alternative method: For the measurement of the
concave lens, it is also possible to move the box
strictly sideways (e.g. along a fixed ruler) and mea-
sure the displacement of the beam at large distances.
The possible displacement is around 7mm, and pre-
cisions around 5% can be expected.
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c) Diffraction grating behind port C (position,
rotation and pitch) The grating produces two
sharp side-beams of 1st and −1st order in horizontal
direction. Therefore it is a linear grating with ver-
tical lines (orientation). The line separation (pitch)
can be determined bymeasuring the angle of the cre-
ated beams relative to the 0th order transmission.
To avoid distraction from the lenses, we choose to

enter through the polarizer (D) and exit through the
grating at port C, and turn the laser to maximum
transmission through the polarizer. By measuring
the transversal beam separation at several distances
from the box, we can fit the progression linearly, and
obtain both the diverging angle and the offset posi-
tion of the grating.
The diffraction angles α for each order n fulfill the

relation
d · sinα = n · λ (41)

where λ is the laser wavelength of 650nm.
We measured the following position values, where

we have a higher point density near the box for a pre-
cise determination of the position, and a wide range
of distances for a precise determination of the beam
angle

x [cm] y [cm]
0.5 0.44
1 0.61

1.5 0.80
2 0.96
3 1.3
4 1.65
6 2.34
8 3.02

10 3.71
12 4.4
14 5.12
16 5.8

which are plotted in Figure 15.
A linear fit yields the slope y′ = 0.3454 ± 0.0005 and

a value of y = 0 at x0 = (−0.77 ± 0.01)cm and α =
arctan y′ = 19.1◦. Therefore we determine the pitch
as

d = λ/ sinα = (1.99± 0.02)µm (42)
The error of this is dominated by the uncertainty of
the laser wavelength (5nm/650nm = 0.8%), while
the measured slope only has an uncertainty of
0.0005/0.3454 = 0.14%.

(true value 2µm) (43)

The position of the grating inside the box is where
the fitted line cuts the x-axis. The main uncertainty
for this stems from the placement accuracy of box
and screen with roughly 1mm,

xg = 3.8cm+ x0 = (3.0± 0.1)cm (44)

from the outer edge of the box. The true value is
xg,true = 3.12cm.

Figure 16: Determination of the laser polarization
using Brewster reflection. The reflected beam will
vanish at horizontal polarization.

d) Polarizer behind port D (rotation angle) To
characterize the polarizer, we need to know the pre-
cise polarization of the laser beam. The laser can be
characterized with the available acrylic glass block,
using reflection from the surface under an angle. In
particular, there is the Brewster angle, at which the
incident light will be fully separated into two orthog-
onally polarized components. This Brewster angle
can be computed from the given optical density, but
more easily it can be probed by minimizing the inten-
sity of a reflected beam.
The students may set the incident angle on a verti-

cal glass surface to the Brewster angle, and simul-
taneously turn the laser around its optical axis to
yield zero reflection (Fig. 16). This is the point where
the laser is purely horizontally polarized, and may be
marked on the turning wheel.
Now, to probe the polarizer, the laser is sent into

the polarizer port (D) as an input. It should not be
used as an output, because the central beam splitter
might be partially polarizing and thereby disturb the
measurement.
Subsequently, the angle of the polarizer is found

by turning the laser around its optical axis until the
transmission is minimized near zero (The minimum
can be found more precisely than the maximum, be-
cause the relative intensity change remains large).
This angle is noted relative to the angle of vertical
laser polarization, and marks the direction of maxi-
mum suppression. Thus, the transmitting direction
of the polarizer is 90◦ from the measured angle.
The polarization angle is found to be 65◦ from the

vertical axis. we do not consider the orientation with
respect tomirroring, only the angle from the horizon-
tal axis.
As the measurement of the point of minimal trans-

mission is quick, but not very precise, a good strat-
egy is to take two measurements 180◦ apart and av-
erage their results.
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E2.3 Properties Points
a) Convex lens at A 1.9

Measurement idea and linearization:
beam diameter as function of distance

0.2

Data collection, at least 10 data
points over 15cm, in case of less:
min(0.05pts × number of measure-
ments, s [cm]/30pts for data range s,
0.5pts total). (Alternatively located
the focal spot quantitatively: 0.2 pts)

0.5

Diagram and fit, alternatively analytic 0.6
Result for f = 6.5 cm (±0.5 cm, half for
±2 cm)

0.2

Result for x+ = 2.2 cm (±0.3 cm, half
for ±0.6 cm)

0.2

Error propagation and estimation 0.2

b) Concave lens at B 1.9
Measurement idea and linearization:
beam diameter as function of distance

0.2

Data collection, at least 10 data
points over 15cm, in case of less:
min(0.05pts × number of measure-
ments, s [cm]/30pts for data range s,
0.5pts total).

0.5

Diagram and fit, alternatively analytic 0.6
Result for f = −9.2 cm (±1 cm, half for
±2 cm)

0.2

Result for x− = 2.2 cm (±0.3 cm, half
for ±0.6 cm)

0.2

Error propagation and estimation 0.2

c) Diffraction grating at C 1.9
Correct pattern orientation (vertical
lines)

0.2

Measurement idea and linearization:
diffraction order separation as func-
tion of distance

0.2

Data collection, at least 3 data
points over 15cm. In case of less:
min(0.2pts × number of measure-
ments, s [cm]/30pts for data range s,
0.5pts total).

0.5

Diagram and fit, alternatively analytic 0.4
Result for d = 2µm (±0.05µm, half for
±0.1µm)

0.2

Result for xg = 3.12 cm (±0.2 cm, half
for ±0.4 cm)

0.2

Error propagation and estimation 0.2

d) Polarizer at D 1.8
Use Brewster angle configuration to
determine laser polarization (0.1 for
idea to use reflections from a dielec-
tric to investigate polarization)

0.4

When reflected beam intensity is
(close to) zero, then horizontally po-
larized

0.2

Noticing that the behavior is different
when D is used as an out- vs. input.

0.2

Use port D as input, not as output (and
mention that)

0.2

Use min, not max transmission 0.2
Result |α| = 65◦ 0.3pts for ±5◦ (0.2pts
for ±9◦) and 0.1pts for orientation
closer to horizontal axis. (0pts if there
was no plausible way to calibrate the
polarization)

0.4

Error estimation 0.2

Total on E2.2 7.5


