Marking scheme (minimal score 0.1pt)

Marker _____

Student _____

TOTAL _____

Task	Criteria	Max.	Marker	Consensus
0		points		
A1	$c(t) = c_0 + C \exp\left(-\frac{t}{-1}\right)$	0.4		
	3Vh			
	$\tau = \frac{37\pi}{nS}$ and	03		
Α2	A fan was used to increase convection rate outside	0.5		
112	the vessel.	0.5		
A3	c_0 is measured	0.3		
A4	Number of points $c(t)$ measured:	0.7		
	0.05 for each measurement with $c > 0.2\%$ (not			
	more than 0.7 total)			
	Time			
	$\Delta t > 2000 \text{ sec}$	0.2		
	$\Delta t > 1000 \text{ sec}$	(0.1)		
A5	Linearized Graph:	0.2		
	Axis labeled and scaled	0.2		
	then 0.7 total)	0.7		
	Approximating curve shown	03		
	Approximating curve shown	0.5		
A6	$\tau = \tau_{individual} \pm 200 \ sec$	1.0		
A7	Error analysis	0.4		
	Part A total	5.0		
B1	$(m-1/2)\lambda = 2h\sqrt{n^2 - \sin^2\theta}$ – reflectance	1.0		
	maxima			
	$m\lambda = 2h\sqrt{n^2 - \sin^2\theta}$ – reflectance minima			
		(0, 0)		
	If reflection phase change is not taken into account	(0.8)		
B2	Measurements			
	Zero was set with use of reflected laser beam or	0.5		
	measurements taken symmetrically.			
	Number of minima and maxima observed 0.2 each	28		
	not move than 2.8	2.0		
	Angles of all minima are not necessary, only the			
	number of minima between two angles should be			
	calculated.			
B3	$h \in [71; 79] \mu m$	1.7	1	
	$h \in [67; 83] \mu m$	(1.2)		
	$h \in [60; 94] \mu m$	(0.8)		
	$h \in [49; 115] \ \mu m$	(0.4)		
	If result is wrong due to incorrect equation, derived			

	in B1, half of points will be given		
	Part B total	6.0	
C1	Theory		
	$\Delta n^* = \sin^2 \beta \Delta n$	0.5	
	$\delta = \frac{h}{\cos\beta} \Delta n^*$	1.0	
	$\delta = \frac{n}{\cos\beta} \sin^2\beta \Delta n$	1.0	
C2	Description of an appropriate experimental setup	0.6	
C3	Measurements		
	Data is measured after zero calibration with use of reflected beam	0.5 0.4x3	
	0.3 for each transmittance extremum observed (not more than 3) If the angle of maximum intensity is determined by eye - 0.1		
	0.3 for each correct value of δ in extremum (not more than 3)	0.3x3	
C4	Value of Δn		
	[0.035; 0.040]	1.0	
	[0.030; 0.045]	(0.5)	
	If wrong Δn was obtained due to wrong h , full points will be given		
C5	Porosity <i>p</i> is calculated correctly from the graph	0.3	
	Part C total	7.0	
D1	Thermal velocity of CO_2 is calculated [350; 430] m/s	0.2	
D2	Volume of the vessel is measured [190; 240] cm^3	0.2	
	If the volume of fan and sensor taken in account	0.1	
D3			
D4	<i>d</i> is calculated correctly from previously measured τ , <i>h</i> and <i>p</i> .	0.5	
D5	$d \in [2; 10] nm$	1.0	
	$d \in [1; 20] nm$	(0.5)	
	If one gets the right answer because of error in		
	calculations, no points are given.		
	Part D total	2.0	